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Total Synthesis of Lasalocid A (X537A) 

Sir: 

The polyether antibiotics1 represent a class of structurally 
fascinating, complex organic molecules that possess potent 
physiological activity by virtue of their ionophoric character. 
While several members of this class have yielded to chemical 
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total synthesis,2 the biological importance of these molecules 
justifies continued excursions into their synthesis. In that vein, 
we report here a highly convergent, "building block" approach 
from carbohydrate precursors that has led to a total synthesis 
of lasalocid A (X537A)3 and has broad potential as a strategy 
for the synthesis of other natural polyether ionophores, as well 
as many structural analogues. 

Degradative work by Westley4 showed that lasalocid A ( I ) 
underwent reverse aldol-type cleavage on either heat or base 
treatment, and, while the aldehyde 2 was unstable and un
derwent further degradation, the polyether ketone 3 was 
readily available. A key feature of both the present synthesis 
and that described by Kishi2a is the ability to affect an aldol-
type condensation between these two degradation products. 
This point, as well as a synthesis of the benzyl ester of the acid 
aldehyde 2, has been demonstrated by Kishi,2a'5 and a synthesis 
of the stereochemical^ more demanding polyether ketone 3 
then constitutes the requirements for a total synthesis. In ad
dition, the similarity between this ketone 3 and the components 
of the other polyether antibiotics1 meant knowledge gained in 
this effort might be applied to the other even more complex 
systems. 

For this work, the ketone 3 was schematically envisaged as 
arising from the three subunits I, II, and IV (Scheme I). The 
plan called for the initial union of parts I and II, and then 
subsequent joining of that product III with the remaining 
subunit IV. This approach has the advantage of not only being 
highly convergent, but also amenable to extensive variation of 
the subunits used. 

The starting point for the synthesis of the furanoid equiva
lent III was "a"-D-glucosaccharino-l,4-lactone (4)6 (Scheme 
II). After appropriate blocking, this lactone was converted into 
the furanoid glycal 57 (subunit equivalent II) by the procedure8 

developed in these laboratories. The ketone equivalent I was 
then added in the form of the a-butyryl side chain by enolate 
Claisen rearrangement of the glycalyl butyrate. Stereocontrol 
of the a-ethyl group in the ester 6 was made possible by control 
of the E/Z ratio of enolates formed9 prior to Claisen rear
rangement, and the diastereomer 67 is the principal product 
(ratio 75:25) under the conditions shown. After purification 
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Scheme H. Synthesis of Polyether Ketone 3° 
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by silica gel chromatography, conversion of the ester 67 into 
the furanoid equivalent III in the form of the acid 77 then re
quired only manipulation of the oxidation states of the terminal 
carbons. 

The pyranoid equivalent IV in the form of the glycal l l 7 was 
prepared from 6-deoxy-L-gulose 810 in a manner8 similar to 
that used for the construction of the glycal 5. Conversion of 
6-deoxy-L-gulose 8 first into the benzyl glycoside and then to 
the acetonide 97 not only sets the stage for glycal formation, 
but also provides an opportunity to operate selectively on the 
4-hydroxyl group.'' For the present work, this hydroxyl group 
was merely blocked, and the incorporation of the C-4 ethyl 
group was postponed to a later stage. Further transformation 
of the acetonide 107 into the required gulal derivative l l 7 

follows the previously described procedures.8 

The union of the furanoid and pyranoid equivalents III and 
IV was again accomplished through use of the enolate Claisen 
rearrangement8 '9 which gave a 67% yield of a mixture of the 
syn isomer 127 and its anti epimer' in a 76:24 ratio. These 
isomers were readily separated on silica gel chromatography, 
and the syn isomer 12 was converted into the alcohol 13.7 To 
incorporate the C-4 ethyl group, the epoxide 14,7 obtained after 
chromatographic separation of a 78:22 isomer mixture from 
oxidation, was formed from the alcohol 13, as shown. Subse
quent dimethyl cuprate cleavage of this epoxide 14 and then 
removal of the benzyl blocking group produced the diol 15.7 

Conversion of the diol 15 into the polyether ketone 3,7 identical 
with naturally derived material12 (IR, NMR, TLC, [a]0), 
followed standard procedures. At the present stage of devel
opment the furanoid equivalent 111 is available in 16% and the 
pyranoid equivalent IV in 25% overall yield from easily ac
cessible precursors, and their union results in the formation of 
the polyether ketone 3 in 1 2% overall yield. Further refinement 
of this process, as well as its adaptation to lasalocid A ana
logues and other polyether antibiotics, is under active inves
tigation. 
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Enantiomer Recognition and Guest-Host 
Configurational Correlation in Crystals of 
Tri-o-thymotide Clathrate Inclusion Compounds 

Sir: 

Chiral recognition by host molecules or molecular assem
blies has attracted considerable attention in recent years.1 We 
describe chiral recognition aspects in single crystals of tri-o-
thymotide (TOT) clathrate inclusion complexes.2 In the latter, 
a large variety of guest molecules may be accommodated in 
cavities (channels or cages) which are built up by TOT mole
cules during crystallization from media containing the 
guest. 
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TOT generally undergoes "spontaneous resolution" on 
crystallization in clathrate structures (cage clathrate, trigonal 
crystals, space group P3i21 or P3221; channel clathrate, 
hexagonal crystals, space group F6i or P65).3'4 Any such single 
crystal thus contains only P or only M configurated TOT 
species and provides a chiral environment about included guest 
molecules. When such clathrates are formed from solutions 
containing a racemic mixture of guest species, the two guest 
enantiomers should be included to a different extent by a 
growing crystal of given handedness and, indeed, such quali
tative results have been described in the past.6 To better un
derstand the nature of chiral molecular recognition, we have 
undertaken a chemical and crystallographic study of the TOT 
clathrates and herein evaluate the degree of chiral recognition 
that is possible with some of these complexes, the scope of guest 

structure that may be included and resolved, and the possibility 
of correlating guest configuration with TOT chirality. 

Single crystals of clathrate were grown from solutions of 
TOT in a large excess of the desired guest by slow cooling or 
slow evaporation. When larger crystals were desired, individual 
clathrate crystals were suspended in saturated guest solutions 
of TOT which were then slowly cooled; this procedure could 
be repeated more than once and crystals weighing up to 0.5 g 
were routinely prepared. The crystals were characterized by 
measurement of their unit cell constants and space groups; the 
TOT:guest ratios were established by NMR spectra and VPC 
analyses of solutions prepared from dissolved crystals and by 
density measurements. 

The enantiomeric excess of the included guest, i.e., the de
gree of optical resolution, and the configuration of the pre
dominant enantiomer were determined by direct polarimetric 
observations of solutions of the guests, by NMR analysis with 
chiral shift reagents, or by VPC analysis of the guest on a chiral 
phase (using recently developed, efficient analytical resolution 
techniques for /V-trifluoroacetyl-2-aminoalkanes,7 cyclic 
ethers,ie-8 and episulfides9). For each guest, crystals containing 
excess R enantiomer and crystals containing excess S enan
tiomer were generally examined, and for each crystal the sign 
of rotation of the TOT was established; such "enantiomeric" 
experiments provided an estimate of reproducibility as well as 
a check that errors due to impurities were not introduced. This 
study is particularly feasible with TOT because it has a suffi
ciently high barrier to enantiomerization, M ^ P (~21 
kcal/mol),10 and specific rotation ([QJ]D >70°) in solution to 
enable measurement of its sign of rotation after dissolving only 
a small crystal chip in cold solvent.33 

Table I displays our results. The higher enantiomer selec
tivity generally observed in the cage clathrates compared with 
that in the channel complexes is intuitively understandable in 
terms of the more complete envelopment of the guest in the 
cages; however, a deeper insight awaits crystal structure 
analyses of representative complexes which will indicate guest 
geometry and guest-host contacts. It might have been 
thought1' that sharp differences in chiral discrimination would 
occur in channel complexes when the length of the included 
guest matched the unit cell length, c = 29 A, of the channel or 
a multiple of the asymmetric unit along the channel, c/6. 
However, on the basis of the results with Ie (estimated length, 
14.1 A, ~c /2) compared with those of Id (12.8 A) and If (17.8 
A), there appears to be little if any such dependence. 

Chiral guests having Ci symmetry were expected to be 
differentiated to a high degree in cage clathrate cavities be
cause the latter contain a twofold axis. Indeed, guests 2a and 
2b afforded the expected cage clathrate crystals and the ex
tracted guests had relatively high optical purities. This prin
ciple, the matching of guest molecular symmetry with the 
symmetry of the cavity, may be useful in the choice of appro
priate host and guest species in other molecular recognition 
problems (cf. ref 5). 

From the results presented, it appears that TOT encla-
thration may be used, at least within a related series of com
pounds, to establish absolute configurations by noting the sign 
of the TOT upon dissolution. Thus, all of the guests 1 having 
configuration 5 are preferentially enclathrated by (+)-TOT 
molecules. Similarly, (H-)-TOT preferentially includes the S1S 
enantiomers of 2. Such correlations may have application in 
configurational assignments where other approaches are 
problematic, e.g., when the formation of derivatives is difficult 
or the substance affords inherently weak chirality observations. 
Since the resolutions described here depend on the guest mo
lecular geometry and not on specific functional groups, ap
plication to chiral hydrocarbons may also be envisaged. 

With regard to preparative resolutions using TOT encla-
thration, it should be noted that, once single crystals of clath-
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